Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents
نویسندگان
چکیده
An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half-point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between -30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.
منابع مشابه
Modulation of potassium channels by antiarrhythmic and antihypertensive drugs.
Agents that modulate cardiac and smooth muscle K+ channels have stimulated considerable interest in recent years because of their therapeutic potential in a number of cardiovascular diseases. Foremost among these drugs are the so-called Class III antiarrhythmic agents, which act by prolonging cardiac action potentials, and K+ channel openers, which hyperpolarize and thereby relax smooth muscle ...
متن کاملRate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide.
Class III antiarrhythmic agents act by selective prolongation of cardiac action potential duration (APD). Methanesulfonanilide class III agents (e.g., E-4031 and dofetilide) are extremely potent and lengthen action potentials in a "reverse" rate-dependent manner; i.e., effects are greater at low compared with high rates of stimulation. By using the whole-cell current-clamp technique in isolated...
متن کاملBlock of IKs by the diuretic agent indapamide modulates cardiac electrophysiological effects of the class III antiarrhythmic drug dl-sotalol.
Indapamide is a diuretic agent with direct electrophysiological effects on ionic currents involved in cardiac repolarization. In particular, indapamide blocks the slow component of delayed rectifier potassium current. In contrast, most class III antiarrhythmic agents, such as dl-sotalol, block the rapid component of delayed rectifier potassium current. Computer simulations have suggested potent...
متن کاملAntiarrhythmic Agent Specific Block of Rapidly Activating Delayed Rectifier K' Current by Dofetilide
Class III antiarrhythmic agents act by selective prolongation of cardiac action potential duration (APD). Methanesulfonanilide class III agents (e.g., E-4031 and dofetilide) are extremely potent and lengthen action potentials in a "reverse" rate-dependent manner; i.e., effects are greater at low compared with high rates of stimulation. By using the whole-cell current-clamp technique in isolated...
متن کاملCardiac Rapidly Activating Delayed Rectifier K' Channel
Class III antiarrhythmic drugs show promise as effective treatments for the suppression of potentially lethal cardiac arrhythmias. Dofetilide (UK-68,798), is a potent class III antiarrhythmic agent that is presently under clinical investigation. The objective of this study was to determine whether [3H]dofetilide could be used as a specific radioligand for the rapidly activating delayed rectifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 96 شماره
صفحات -
تاریخ انتشار 1990